Code:
/ 4.0 / 4.0 / DEVDIV_TFS / Dev10 / Releases / RTMRel / ndp / clr / src / BCL / System / Int64.cs / 1305376 / Int64.cs
// ==++== // // Copyright (c) Microsoft Corporation. All rights reserved. // // ==--== /*============================================================ ** ** Class: Int64.cs ** ** ** Purpose: This class will encapsulate a long and provide an ** Object representation of it. ** ** ===========================================================*/ namespace System { using System; using System.Globalization; ///#if GENERICS_WORK /// using System.Numerics; ///#endif using System.Runtime.InteropServices; using System.Diagnostics.Contracts; [Serializable] [System.Runtime.InteropServices.StructLayout(LayoutKind.Sequential)] [System.Runtime.InteropServices.ComVisible(true)] #if GENERICS_WORK public struct Int64 : IComparable, IFormattable, IConvertible , IComparable, IEquatable /// , IArithmetic #if false // ugly hack to fix syntax for TrimSrc parser, which ignores #if directives { } #endif #else public struct Int64 : IComparable, IFormattable, IConvertible #endif { internal long m_value; public const long MaxValue = 0x7fffffffffffffffL; public const long MinValue = unchecked((long)0x8000000000000000L); // Compares this object to another object, returning an integer that // indicates the relationship. // Returns a value less than zero if this object // null is considered to be less than any instance. // If object is not of type Int64, this method throws an ArgumentException. // public int CompareTo(Object value) { if (value == null) { return 1; } if (value is Int64) { // Need to use compare because subtraction will wrap // to positive for very large neg numbers, etc. long i = (long)value; if (m_value < i) return -1; if (m_value > i) return 1; return 0; } throw new ArgumentException (Environment.GetResourceString("Arg_MustBeInt64")); } public int CompareTo(Int64 value) { // Need to use compare because subtraction will wrap // to positive for very large neg numbers, etc. if (m_value < value) return -1; if (m_value > value) return 1; return 0; } public override bool Equals(Object obj) { if (!(obj is Int64)) { return false; } return m_value == ((Int64)obj).m_value; } public bool Equals(Int64 obj) { return m_value == obj; } // The value of the lower 32 bits XORed with the uppper 32 bits. public override int GetHashCode() { return (unchecked((int)((long)m_value)) ^ (int)(m_value >> 32)); } [System.Security.SecuritySafeCritical] // auto-generated public override String ToString() { Contract.Ensures(Contract.Result () != null); return Number.FormatInt64(m_value, null, NumberFormatInfo.CurrentInfo); } [System.Security.SecuritySafeCritical] // auto-generated public String ToString(IFormatProvider provider) { Contract.Ensures(Contract.Result () != null); return Number.FormatInt64(m_value, null, NumberFormatInfo.GetInstance(provider)); } [System.Security.SecuritySafeCritical] // auto-generated public String ToString(String format) { Contract.Ensures(Contract.Result () != null); return Number.FormatInt64(m_value, format, NumberFormatInfo.CurrentInfo); } [System.Security.SecuritySafeCritical] // auto-generated public String ToString(String format, IFormatProvider provider) { Contract.Ensures(Contract.Result () != null); return Number.FormatInt64(m_value, format, NumberFormatInfo.GetInstance(provider)); } public static long Parse(String s) { return Number.ParseInt64(s, NumberStyles.Integer, NumberFormatInfo.CurrentInfo); } public static long Parse(String s, NumberStyles style) { NumberFormatInfo.ValidateParseStyleInteger(style); return Number.ParseInt64(s, style, NumberFormatInfo.CurrentInfo); } public static long Parse(String s, IFormatProvider provider) { return Number.ParseInt64(s, NumberStyles.Integer, NumberFormatInfo.GetInstance(provider)); } // Parses a long from a String in the given style. If // a NumberFormatInfo isn't specified, the current culture's // NumberFormatInfo is assumed. // public static long Parse(String s, NumberStyles style, IFormatProvider provider) { NumberFormatInfo.ValidateParseStyleInteger(style); return Number.ParseInt64(s, style, NumberFormatInfo.GetInstance(provider)); } [System.Security.SecuritySafeCritical] // auto-generated public static Boolean TryParse(String s, out Int64 result) { return Number.TryParseInt64(s, NumberStyles.Integer, NumberFormatInfo.CurrentInfo, out result); } [System.Security.SecuritySafeCritical] // auto-generated public static Boolean TryParse(String s, NumberStyles style, IFormatProvider provider, out Int64 result) { NumberFormatInfo.ValidateParseStyleInteger(style); return Number.TryParseInt64(s, style, NumberFormatInfo.GetInstance(provider), out result); } // // IConvertible implementation // public TypeCode GetTypeCode() { return TypeCode.Int64; } /// bool IConvertible.ToBoolean(IFormatProvider provider) { return Convert.ToBoolean(m_value); } /// char IConvertible.ToChar(IFormatProvider provider) { return Convert.ToChar(m_value); } /// sbyte IConvertible.ToSByte(IFormatProvider provider) { return Convert.ToSByte(m_value); } /// byte IConvertible.ToByte(IFormatProvider provider) { return Convert.ToByte(m_value); } /// short IConvertible.ToInt16(IFormatProvider provider) { return Convert.ToInt16(m_value); } /// ushort IConvertible.ToUInt16(IFormatProvider provider) { return Convert.ToUInt16(m_value); } /// int IConvertible.ToInt32(IFormatProvider provider) { return Convert.ToInt32(m_value); } /// uint IConvertible.ToUInt32(IFormatProvider provider) { return Convert.ToUInt32(m_value); } /// long IConvertible.ToInt64(IFormatProvider provider) { return m_value; } /// ulong IConvertible.ToUInt64(IFormatProvider provider) { return Convert.ToUInt64(m_value); } /// float IConvertible.ToSingle(IFormatProvider provider) { return Convert.ToSingle(m_value); } /// double IConvertible.ToDouble(IFormatProvider provider) { return Convert.ToDouble(m_value); } /// Decimal IConvertible.ToDecimal(IFormatProvider provider) { return Convert.ToDecimal(m_value); } /// DateTime IConvertible.ToDateTime(IFormatProvider provider) { throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "Int64", "DateTime")); } /// Object IConvertible.ToType(Type type, IFormatProvider provider) { return Convert.DefaultToType((IConvertible)this, type, provider); } ///#if GENERICS_WORK /// // /// // IArithmetic implementation /// // /// /// /// /// Int64 IArithmetic .AbsoluteValue(out bool overflowed) { /// overflowed = (m_value == MinValue); // -m_value overflows /// return (m_value < 0 ? -m_value : m_value); /// } /// /// /// /// Int64 IArithmetic .Negate(out bool overflowed) { /// overflowed = (m_value == MinValue); // Negate(MinValue) overflows /// return (-m_value); /// } /// /// /// /// Int64 IArithmetic .Sign(out bool overflowed) { /// overflowed = false; /// return (m_value >= 0 ? (m_value == 0 ? 0 : 1) : -1); /// } /// /// /// /// Int64 IArithmetic .Add(Int64 addend, out bool overflowed) { /// // /// // true arithmetic range check => re-written for signed int /// // ------------------------------- ------------------------------- /// // ( ((m_value + addend) > MaxValue) => ( (addend > 0 && m_value > MaxValue - addend) /// // ||((m_value + addend) < MinValue)) ||(addend < 0 && m_value < MinValue - addend) ) /// /// /// overflowed = ((addend > 0) && (m_value > (MaxValue - addend))) || /// ((addend < 0) && (m_value < (MinValue - addend))); /// return unchecked(m_value + addend); /// } /// /// /// /// Int64 IArithmetic .Subtract(Int64 subtrahend, out bool overflowed) { /// // /// // true arithmetic range check => re-written for signed int /// // ------------------------------- ------------------------------- /// // ( ((m_value - subtrahend) > MaxValue) => ( (subtrahend < 0 && m_value > MaxValue + subtrahend) /// // ||((m_value - subtrahend) < MinValue)) ||(subtrahend > 0 && m_value < MinValue + subtrahend) ) /// /// overflowed = ((subtrahend < 0) && (m_value > (MaxValue + subtrahend))) || /// ((subtrahend > 0) && (m_value < (MinValue + subtrahend))); /// return unchecked(m_value - subtrahend); /// } /// /// /// /// Int64 IArithmetic .Multiply(Int64 multiplier, out bool overflowed) { /// overflowed = Int64MultiplyOverflowed(m_value, multiplier); /// return unchecked(m_value * multiplier); /// } /// /// // /// // Please refer to VM\jithelpers.cpp JIT_LMulOvf for more detailed information /// // /// // We perform this overflow check here instead of simply using a 'checked' operation /// // as it is roughly 1,345X faster. /// // /// static Boolean Int64MultiplyOverflowed(Int64 val1, Int64 val2) { /// Int64 ret; /// /// // Remember the sign of the result /// Int32 sign = (Int32) (Hi32Bits(val1) ^ Hi32Bits(val2)); /// /// // Convert to unsigned multiplication /// if (val1 < 0) val1 = -val1; /// if (val2 < 0) val2 = -val2; /// /// // Get the upper 32 bits of the numbers /// UInt32 val1High = Hi32Bits(val1); /// UInt32 val2High = Hi32Bits(val2); /// /// UInt64 valMid; /// /// if (val1High == 0) { /// // Compute the 'middle' bits of the long multiplication /// valMid = Mul32x32To64(val2High, (UInt32)val1); /// } /// else { /// if (val2High != 0) /// return true; /// // Compute the 'middle' bits of the long multiplication /// valMid = Mul32x32To64(val1High, (UInt32)val2); /// } /// /// // See if any bits after bit 32 are set /// if (Hi32Bits((Int64)valMid) != 0) /// return true; /// /// ret = (Int64) (Mul32x32To64((UInt32)val1, (UInt32)val2) + (valMid << 32)); /// /// // check for overflow /// if (Hi32Bits(ret) < (UInt32)valMid) /// return true; /// /// if (sign >= 0) { /// // have we spilled into the sign bit? /// if (ret < 0) /// return true; /// } /// else { /// ret = -ret; /// // have we spilled into the sign bit? /// if (ret > 0) /// return true; /// } /// return false; /// } /// /// // /// // helper method to get high 32-bit of 64-bit int /// // /// static UInt32 Hi32Bits(Int64 x) { /// return ((UInt32)((UInt64)(x) >> 32)); /// } /// /// // /// // helper method to multiply two 32-bit uints /// // /// static UInt64 Mul32x32To64(UInt32 x, UInt32 y) { /// return ((UInt64)(x) * (UInt64)(y)); /// } /// /// /// /// Int64 IArithmetic .Divide(Int64 divisor, out bool overflowed) { /// // signed integer division can overflow. Consider the following /// // 8-bit case: -128/-1 = 128. /// // 128 won't fit into a signed 8-bit integer, instead you will end up /// // with -128. /// // /// // Because of this corner case, we must check if the numerator /// // is MinValue and if the denominator is -1. /// /// overflowed = (divisor == -1 && m_value == MinValue); /// /// if (overflowed) { /// // we special case (MinValue / (-1)) for Int32 and Int64 as /// // unchecked still throws OverflowException when variables /// // are used instead of constants /// return MinValue; /// } /// else { /// return unchecked(m_value / divisor); /// } /// } /// /// /// /// Int64 IArithmetic .DivideRemainder(Int64 divisor, out Int64 remainder, out bool overflowed) { /// overflowed = (divisor == -1 && m_value == MinValue); /// /// if (overflowed) { /// // we special case (MinValue / (-1)) for Int32 and Int64 as /// // unchecked still throws OverflowException when variables /// // are used instead of constants /// remainder = 0; /// return MinValue; /// } /// else { /// remainder = (m_value % divisor); /// return unchecked(m_value / divisor); /// } /// } /// /// /// /// Int64 IArithmetic .Remainder(Int64 divisor, out bool overflowed) { /// overflowed = false; /// /// if (divisor == -1 && m_value == MinValue) { /// // we special case (MinValue % (-1)) for Int32 and Int64 as /// // unchecked still throws OverflowException when variables /// // are used instead of constants /// return 0; /// } /// else { /// return (m_value % divisor); /// } /// } /// /// /// /// ArithmeticDescriptor IArithmetic .GetDescriptor() { /// if (s_descriptor == null) { /// s_descriptor = new Int64ArithmeticDescriptor( ArithmeticCapabilities.One /// | ArithmeticCapabilities.Zero /// | ArithmeticCapabilities.MaxValue /// | ArithmeticCapabilities.MinValue); /// } /// return s_descriptor; /// } /// /// private static Int64ArithmeticDescriptor s_descriptor; /// /// class Int64ArithmeticDescriptor : ArithmeticDescriptor { /// public Int64ArithmeticDescriptor(ArithmeticCapabilities capabilities) : base(capabilities) {} /// /// public override Int64 One { /// get { /// return (Int64) 1; /// } /// } /// /// public override Int64 Zero { /// get { /// return (Int64) 0; /// } /// } /// /// public override Int64 MinValue { /// get { /// return Int64.MinValue; /// } /// } /// /// public override Int64 MaxValue { /// get { /// return Int64.MaxValue; /// } /// } /// } ///#endif // #if GENERICS_WORK } } // File provided for Reference Use Only by Microsoft Corporation (c) 2007. // ==++== // // Copyright (c) Microsoft Corporation. All rights reserved. // // ==--== /*============================================================ ** ** Class: Int64.cs ** ** ** Purpose: This class will encapsulate a long and provide an ** Object representation of it. ** ** ===========================================================*/ namespace System { using System; using System.Globalization; ///#if GENERICS_WORK /// using System.Numerics; ///#endif using System.Runtime.InteropServices; using System.Diagnostics.Contracts; [Serializable] [System.Runtime.InteropServices.StructLayout(LayoutKind.Sequential)] [System.Runtime.InteropServices.ComVisible(true)] #if GENERICS_WORK public struct Int64 : IComparable, IFormattable, IConvertible , IComparable , IEquatable /// , IArithmetic #if false // ugly hack to fix syntax for TrimSrc parser, which ignores #if directives { } #endif #else public struct Int64 : IComparable, IFormattable, IConvertible #endif { internal long m_value; public const long MaxValue = 0x7fffffffffffffffL; public const long MinValue = unchecked((long)0x8000000000000000L); // Compares this object to another object, returning an integer that // indicates the relationship. // Returns a value less than zero if this object // null is considered to be less than any instance. // If object is not of type Int64, this method throws an ArgumentException. // public int CompareTo(Object value) { if (value == null) { return 1; } if (value is Int64) { // Need to use compare because subtraction will wrap // to positive for very large neg numbers, etc. long i = (long)value; if (m_value < i) return -1; if (m_value > i) return 1; return 0; } throw new ArgumentException (Environment.GetResourceString("Arg_MustBeInt64")); } public int CompareTo(Int64 value) { // Need to use compare because subtraction will wrap // to positive for very large neg numbers, etc. if (m_value < value) return -1; if (m_value > value) return 1; return 0; } public override bool Equals(Object obj) { if (!(obj is Int64)) { return false; } return m_value == ((Int64)obj).m_value; } public bool Equals(Int64 obj) { return m_value == obj; } // The value of the lower 32 bits XORed with the uppper 32 bits. public override int GetHashCode() { return (unchecked((int)((long)m_value)) ^ (int)(m_value >> 32)); } [System.Security.SecuritySafeCritical] // auto-generated public override String ToString() { Contract.Ensures(Contract.Result () != null); return Number.FormatInt64(m_value, null, NumberFormatInfo.CurrentInfo); } [System.Security.SecuritySafeCritical] // auto-generated public String ToString(IFormatProvider provider) { Contract.Ensures(Contract.Result () != null); return Number.FormatInt64(m_value, null, NumberFormatInfo.GetInstance(provider)); } [System.Security.SecuritySafeCritical] // auto-generated public String ToString(String format) { Contract.Ensures(Contract.Result () != null); return Number.FormatInt64(m_value, format, NumberFormatInfo.CurrentInfo); } [System.Security.SecuritySafeCritical] // auto-generated public String ToString(String format, IFormatProvider provider) { Contract.Ensures(Contract.Result () != null); return Number.FormatInt64(m_value, format, NumberFormatInfo.GetInstance(provider)); } public static long Parse(String s) { return Number.ParseInt64(s, NumberStyles.Integer, NumberFormatInfo.CurrentInfo); } public static long Parse(String s, NumberStyles style) { NumberFormatInfo.ValidateParseStyleInteger(style); return Number.ParseInt64(s, style, NumberFormatInfo.CurrentInfo); } public static long Parse(String s, IFormatProvider provider) { return Number.ParseInt64(s, NumberStyles.Integer, NumberFormatInfo.GetInstance(provider)); } // Parses a long from a String in the given style. If // a NumberFormatInfo isn't specified, the current culture's // NumberFormatInfo is assumed. // public static long Parse(String s, NumberStyles style, IFormatProvider provider) { NumberFormatInfo.ValidateParseStyleInteger(style); return Number.ParseInt64(s, style, NumberFormatInfo.GetInstance(provider)); } [System.Security.SecuritySafeCritical] // auto-generated public static Boolean TryParse(String s, out Int64 result) { return Number.TryParseInt64(s, NumberStyles.Integer, NumberFormatInfo.CurrentInfo, out result); } [System.Security.SecuritySafeCritical] // auto-generated public static Boolean TryParse(String s, NumberStyles style, IFormatProvider provider, out Int64 result) { NumberFormatInfo.ValidateParseStyleInteger(style); return Number.TryParseInt64(s, style, NumberFormatInfo.GetInstance(provider), out result); } // // IConvertible implementation // public TypeCode GetTypeCode() { return TypeCode.Int64; } /// bool IConvertible.ToBoolean(IFormatProvider provider) { return Convert.ToBoolean(m_value); } /// char IConvertible.ToChar(IFormatProvider provider) { return Convert.ToChar(m_value); } /// sbyte IConvertible.ToSByte(IFormatProvider provider) { return Convert.ToSByte(m_value); } /// byte IConvertible.ToByte(IFormatProvider provider) { return Convert.ToByte(m_value); } /// short IConvertible.ToInt16(IFormatProvider provider) { return Convert.ToInt16(m_value); } /// ushort IConvertible.ToUInt16(IFormatProvider provider) { return Convert.ToUInt16(m_value); } /// int IConvertible.ToInt32(IFormatProvider provider) { return Convert.ToInt32(m_value); } /// uint IConvertible.ToUInt32(IFormatProvider provider) { return Convert.ToUInt32(m_value); } /// long IConvertible.ToInt64(IFormatProvider provider) { return m_value; } /// ulong IConvertible.ToUInt64(IFormatProvider provider) { return Convert.ToUInt64(m_value); } /// float IConvertible.ToSingle(IFormatProvider provider) { return Convert.ToSingle(m_value); } /// double IConvertible.ToDouble(IFormatProvider provider) { return Convert.ToDouble(m_value); } /// Decimal IConvertible.ToDecimal(IFormatProvider provider) { return Convert.ToDecimal(m_value); } /// DateTime IConvertible.ToDateTime(IFormatProvider provider) { throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "Int64", "DateTime")); } /// Object IConvertible.ToType(Type type, IFormatProvider provider) { return Convert.DefaultToType((IConvertible)this, type, provider); } ///#if GENERICS_WORK /// // /// // IArithmetic implementation /// // /// /// /// /// Int64 IArithmetic .AbsoluteValue(out bool overflowed) { /// overflowed = (m_value == MinValue); // -m_value overflows /// return (m_value < 0 ? -m_value : m_value); /// } /// /// /// /// Int64 IArithmetic .Negate(out bool overflowed) { /// overflowed = (m_value == MinValue); // Negate(MinValue) overflows /// return (-m_value); /// } /// /// /// /// Int64 IArithmetic .Sign(out bool overflowed) { /// overflowed = false; /// return (m_value >= 0 ? (m_value == 0 ? 0 : 1) : -1); /// } /// /// /// /// Int64 IArithmetic .Add(Int64 addend, out bool overflowed) { /// // /// // true arithmetic range check => re-written for signed int /// // ------------------------------- ------------------------------- /// // ( ((m_value + addend) > MaxValue) => ( (addend > 0 && m_value > MaxValue - addend) /// // ||((m_value + addend) < MinValue)) ||(addend < 0 && m_value < MinValue - addend) ) /// /// /// overflowed = ((addend > 0) && (m_value > (MaxValue - addend))) || /// ((addend < 0) && (m_value < (MinValue - addend))); /// return unchecked(m_value + addend); /// } /// /// /// /// Int64 IArithmetic .Subtract(Int64 subtrahend, out bool overflowed) { /// // /// // true arithmetic range check => re-written for signed int /// // ------------------------------- ------------------------------- /// // ( ((m_value - subtrahend) > MaxValue) => ( (subtrahend < 0 && m_value > MaxValue + subtrahend) /// // ||((m_value - subtrahend) < MinValue)) ||(subtrahend > 0 && m_value < MinValue + subtrahend) ) /// /// overflowed = ((subtrahend < 0) && (m_value > (MaxValue + subtrahend))) || /// ((subtrahend > 0) && (m_value < (MinValue + subtrahend))); /// return unchecked(m_value - subtrahend); /// } /// /// /// /// Int64 IArithmetic .Multiply(Int64 multiplier, out bool overflowed) { /// overflowed = Int64MultiplyOverflowed(m_value, multiplier); /// return unchecked(m_value * multiplier); /// } /// /// // /// // Please refer to VM\jithelpers.cpp JIT_LMulOvf for more detailed information /// // /// // We perform this overflow check here instead of simply using a 'checked' operation /// // as it is roughly 1,345X faster. /// // /// static Boolean Int64MultiplyOverflowed(Int64 val1, Int64 val2) { /// Int64 ret; /// /// // Remember the sign of the result /// Int32 sign = (Int32) (Hi32Bits(val1) ^ Hi32Bits(val2)); /// /// // Convert to unsigned multiplication /// if (val1 < 0) val1 = -val1; /// if (val2 < 0) val2 = -val2; /// /// // Get the upper 32 bits of the numbers /// UInt32 val1High = Hi32Bits(val1); /// UInt32 val2High = Hi32Bits(val2); /// /// UInt64 valMid; /// /// if (val1High == 0) { /// // Compute the 'middle' bits of the long multiplication /// valMid = Mul32x32To64(val2High, (UInt32)val1); /// } /// else { /// if (val2High != 0) /// return true; /// // Compute the 'middle' bits of the long multiplication /// valMid = Mul32x32To64(val1High, (UInt32)val2); /// } /// /// // See if any bits after bit 32 are set /// if (Hi32Bits((Int64)valMid) != 0) /// return true; /// /// ret = (Int64) (Mul32x32To64((UInt32)val1, (UInt32)val2) + (valMid << 32)); /// /// // check for overflow /// if (Hi32Bits(ret) < (UInt32)valMid) /// return true; /// /// if (sign >= 0) { /// // have we spilled into the sign bit? /// if (ret < 0) /// return true; /// } /// else { /// ret = -ret; /// // have we spilled into the sign bit? /// if (ret > 0) /// return true; /// } /// return false; /// } /// /// // /// // helper method to get high 32-bit of 64-bit int /// // /// static UInt32 Hi32Bits(Int64 x) { /// return ((UInt32)((UInt64)(x) >> 32)); /// } /// /// // /// // helper method to multiply two 32-bit uints /// // /// static UInt64 Mul32x32To64(UInt32 x, UInt32 y) { /// return ((UInt64)(x) * (UInt64)(y)); /// } /// /// /// /// Int64 IArithmetic .Divide(Int64 divisor, out bool overflowed) { /// // signed integer division can overflow. Consider the following /// // 8-bit case: -128/-1 = 128. /// // 128 won't fit into a signed 8-bit integer, instead you will end up /// // with -128. /// // /// // Because of this corner case, we must check if the numerator /// // is MinValue and if the denominator is -1. /// /// overflowed = (divisor == -1 && m_value == MinValue); /// /// if (overflowed) { /// // we special case (MinValue / (-1)) for Int32 and Int64 as /// // unchecked still throws OverflowException when variables /// // are used instead of constants /// return MinValue; /// } /// else { /// return unchecked(m_value / divisor); /// } /// } /// /// /// /// Int64 IArithmetic .DivideRemainder(Int64 divisor, out Int64 remainder, out bool overflowed) { /// overflowed = (divisor == -1 && m_value == MinValue); /// /// if (overflowed) { /// // we special case (MinValue / (-1)) for Int32 and Int64 as /// // unchecked still throws OverflowException when variables /// // are used instead of constants /// remainder = 0; /// return MinValue; /// } /// else { /// remainder = (m_value % divisor); /// return unchecked(m_value / divisor); /// } /// } /// /// /// /// Int64 IArithmetic .Remainder(Int64 divisor, out bool overflowed) { /// overflowed = false; /// /// if (divisor == -1 && m_value == MinValue) { /// // we special case (MinValue % (-1)) for Int32 and Int64 as /// // unchecked still throws OverflowException when variables /// // are used instead of constants /// return 0; /// } /// else { /// return (m_value % divisor); /// } /// } /// /// /// /// ArithmeticDescriptor IArithmetic .GetDescriptor() { /// if (s_descriptor == null) { /// s_descriptor = new Int64ArithmeticDescriptor( ArithmeticCapabilities.One /// | ArithmeticCapabilities.Zero /// | ArithmeticCapabilities.MaxValue /// | ArithmeticCapabilities.MinValue); /// } /// return s_descriptor; /// } /// /// private static Int64ArithmeticDescriptor s_descriptor; /// /// class Int64ArithmeticDescriptor : ArithmeticDescriptor { /// public Int64ArithmeticDescriptor(ArithmeticCapabilities capabilities) : base(capabilities) {} /// /// public override Int64 One { /// get { /// return (Int64) 1; /// } /// } /// /// public override Int64 Zero { /// get { /// return (Int64) 0; /// } /// } /// /// public override Int64 MinValue { /// get { /// return Int64.MinValue; /// } /// } /// /// public override Int64 MaxValue { /// get { /// return Int64.MaxValue; /// } /// } /// } ///#endif // #if GENERICS_WORK } } // File provided for Reference Use Only by Microsoft Corporation (c) 2007.
Link Menu

This book is available now!
Buy at Amazon US or
Buy at Amazon UK
- HideDisabledControlAdapter.cs
- EntityDataSourceValidationException.cs
- EncryptedPackage.cs
- Types.cs
- NotImplementedException.cs
- CustomMenuItemCollection.cs
- ApplicationInfo.cs
- Predicate.cs
- CheckedListBox.cs
- NavigationWindowAutomationPeer.cs
- CommandManager.cs
- VisualStyleRenderer.cs
- XmlSerializationGeneratedCode.cs
- DataBoundControlDesigner.cs
- FlagsAttribute.cs
- columnmapkeybuilder.cs
- ProvidePropertyAttribute.cs
- QueryAccessibilityHelpEvent.cs
- IDReferencePropertyAttribute.cs
- Types.cs
- DownloadProgressEventArgs.cs
- SystemDiagnosticsSection.cs
- HashAlgorithm.cs
- KeyedHashAlgorithm.cs
- followingquery.cs
- XmlSchemaValidationException.cs
- XmlIterators.cs
- SchemaSetCompiler.cs
- EventHandlers.cs
- DataGridViewEditingControlShowingEventArgs.cs
- RecordBuilder.cs
- IntegerValidator.cs
- objectresult_tresulttype.cs
- ExecutionEngineException.cs
- ScrollData.cs
- XmlWrappingWriter.cs
- RelationshipWrapper.cs
- CatalogZoneBase.cs
- SoapElementAttribute.cs
- AmbientProperties.cs
- TransformPattern.cs
- ReverseInheritProperty.cs
- SpoolingTask.cs
- UidManager.cs
- AutomationElementCollection.cs
- HtmlInputCheckBox.cs
- WindowsGraphics2.cs
- AssemblyBuilderData.cs
- OpenTypeLayoutCache.cs
- HttpModuleActionCollection.cs
- TransformationRules.cs
- Variable.cs
- FastPropertyAccessor.cs
- ErrorFormatter.cs
- WindowsSolidBrush.cs
- ApplicationBuildProvider.cs
- GridViewUpdatedEventArgs.cs
- DbProviderFactoriesConfigurationHandler.cs
- OpCellTreeNode.cs
- DrawingContextWalker.cs
- WebBrowserNavigatedEventHandler.cs
- DependencySource.cs
- OleDbPermission.cs
- ConstructorNeedsTagAttribute.cs
- EntityConnectionStringBuilder.cs
- IsolatedStorageFilePermission.cs
- PersonalizationDictionary.cs
- Viewport3DAutomationPeer.cs
- listitem.cs
- NonClientArea.cs
- ManagedIStream.cs
- ClientTargetCollection.cs
- XmlHierarchicalEnumerable.cs
- Pen.cs
- ProgressiveCrcCalculatingStream.cs
- cryptoapiTransform.cs
- AssociatedControlConverter.cs
- VisualTreeHelper.cs
- WindowsProgressbar.cs
- Action.cs
- RadioButton.cs
- RegexRunner.cs
- CroppedBitmap.cs
- ObjRef.cs
- initElementDictionary.cs
- EntityContainerAssociationSet.cs
- AsynchronousChannelMergeEnumerator.cs
- DesignTimeSiteMapProvider.cs
- CodeDelegateInvokeExpression.cs
- WindowClosedEventArgs.cs
- CodeTypeOfExpression.cs
- Pair.cs
- DES.cs
- RuntimeConfigLKG.cs
- Vector3DCollectionValueSerializer.cs
- ConstructorBuilder.cs
- CRYPTPROTECT_PROMPTSTRUCT.cs
- IIS7WorkerRequest.cs
- PackagePartCollection.cs
- _ProxyRegBlob.cs