SByte.cs source code in C# .NET

Source code for the .NET framework in C#

                        

Code:

/ 4.0 / 4.0 / DEVDIV_TFS / Dev10 / Releases / RTMRel / ndp / clr / src / BCL / System / SByte.cs / 1305376 / SByte.cs

                            // ==++== 
//
//   Copyright (c) Microsoft Corporation.  All rights reserved.
//
// ==--== 
/*============================================================
** 
** Class:  SByte 
**
** 
** Purpose:
**
**
===========================================================*/ 
namespace System {
    using System.Globalization; 
    using System; 
///#if GENERICS_WORK
///    using System.Numerics; 
///#endif
    using System.Runtime.InteropServices;
    using System.Diagnostics.Contracts;
 
    // A place holder class for signed bytes.
[Serializable] 
[CLSCompliant(false), System.Runtime.InteropServices.StructLayout(LayoutKind.Sequential)] 
[System.Runtime.InteropServices.ComVisible(true)]
#if GENERICS_WORK 
    public struct SByte : IComparable, IFormattable, IConvertible
    , IComparable, IEquatable
/// , IArithmetic
#if false // ugly hack to fix syntax for TrimSrc parser, which ignores #if directives 
    {
    } 
#endif 
#else
    public struct SByte : IComparable, IFormattable, IConvertible 
#endif
    {
        private sbyte m_value;
 
        // The maximum value that a Byte may represent: 127.
        public const sbyte MaxValue = (sbyte)0x7F; 
 
        // The minimum value that a Byte may represent: -128.
        public const sbyte MinValue = unchecked((sbyte)0x80); 


        // Compares this object to another object, returning an integer that
        // indicates the relationship. 
        // Returns a value less than zero if this  object
        // null is considered to be less than any instance. 
        // If object is not of type SByte, this method throws an ArgumentException. 
        //
        public int CompareTo(Object obj) { 
            if (obj == null) {
                return 1;
            }
            if (!(obj is SByte)) { 
                throw new ArgumentException (Environment.GetResourceString("Arg_MustBeSByte"));
            } 
            return m_value - ((SByte)obj).m_value; 
        }
 
        public int CompareTo(SByte value) {
            return m_value - value;
        }
 
        // Determines whether two Byte objects are equal.
        public override bool Equals(Object obj) { 
            if (!(obj is SByte)) { 
                return false;
            } 
            return m_value == ((SByte)obj).m_value;
        }

        public bool Equals(SByte obj) 
        {
            return m_value == obj; 
        } 

        // Gets a hash code for this instance. 
        public override int GetHashCode() {
            return ((int)m_value ^ (int)m_value << 8);
        }
 

        // Provides a string representation of a byte. 
        [System.Security.SecuritySafeCritical]  // auto-generated 
        public override String ToString() {
            Contract.Ensures(Contract.Result() != null); 
            return Number.FormatInt32(m_value, null, NumberFormatInfo.CurrentInfo);
        }

        [System.Security.SecuritySafeCritical]  // auto-generated 
        public String ToString(IFormatProvider provider) {
            Contract.Ensures(Contract.Result() != null); 
            return Number.FormatInt32(m_value, null, NumberFormatInfo.GetInstance(provider)); 
        }
 
        public String ToString(String format) {
            Contract.Ensures(Contract.Result() != null);
            return ToString(format, NumberFormatInfo.CurrentInfo);
        } 

        public String ToString(String format, IFormatProvider provider) { 
            Contract.Ensures(Contract.Result() != null); 
            return ToString(format, NumberFormatInfo.GetInstance(provider));
        } 

        [System.Security.SecuritySafeCritical]  // auto-generated
        private String ToString(String format, NumberFormatInfo info) {
            Contract.Ensures(Contract.Result() != null); 

            if (m_value<0 && format!=null && format.Length>0 && (format[0]=='X' || format[0]=='x')) { 
                uint temp = (uint)(m_value & 0x000000FF); 
                return Number.FormatUInt32(temp, format, info);
            } 
            return Number.FormatInt32(m_value, format, info);
        }

        [CLSCompliant(false)] 
        public static sbyte Parse(String s) {
            return Parse(s, NumberStyles.Integer, NumberFormatInfo.CurrentInfo); 
        } 

        [CLSCompliant(false)] 
        public static sbyte Parse(String s, NumberStyles style) {
            NumberFormatInfo.ValidateParseStyleInteger(style);
            return Parse(s, style, NumberFormatInfo.CurrentInfo);
        } 

        [CLSCompliant(false)] 
        public static sbyte Parse(String s, IFormatProvider provider) { 
            return Parse(s, NumberStyles.Integer, NumberFormatInfo.GetInstance(provider));
        } 

        // Parses a signed byte from a String in the given style.  If
        // a NumberFormatInfo isn't specified, the current culture's
        // NumberFormatInfo is assumed. 
        //
        [CLSCompliant(false)] 
        public static sbyte Parse(String s, NumberStyles style, IFormatProvider provider) { 
            NumberFormatInfo.ValidateParseStyleInteger(style);
            return Parse(s, style, NumberFormatInfo.GetInstance(provider)); 
        }

        private static sbyte Parse(String s, NumberStyles style, NumberFormatInfo info) {
 
            int i = 0;
            try { 
                i = Number.ParseInt32(s, style, info); 
            }
            catch(OverflowException e) { 
                throw new OverflowException(Environment.GetResourceString("Overflow_SByte"), e);
            }

            if ((style & NumberStyles.AllowHexSpecifier) != 0) { // We are parsing a hexadecimal number 
                if ((i < 0) || i > Byte.MaxValue) {
                    throw new OverflowException(Environment.GetResourceString("Overflow_SByte")); 
                } 
                return (sbyte)i;
            } 

            if (i < MinValue || i > MaxValue) throw new OverflowException(Environment.GetResourceString("Overflow_SByte"));
            return (sbyte)i;
        } 

        [CLSCompliant(false)] 
        public static bool TryParse(String s, out SByte result) { 
            return TryParse(s, NumberStyles.Integer, NumberFormatInfo.CurrentInfo, out result);
        } 

        [CLSCompliant(false)]
        public static bool TryParse(String s, NumberStyles style, IFormatProvider provider, out SByte result) {
            NumberFormatInfo.ValidateParseStyleInteger(style); 
            return TryParse(s, style, NumberFormatInfo.GetInstance(provider), out result);
        } 
 
        private static bool TryParse(String s, NumberStyles style, NumberFormatInfo info, out SByte result) {
 
            result = 0;
            int i;
            if (!Number.TryParseInt32(s, style, info, out i)) {
                return false; 
            }
 
            if ((style & NumberStyles.AllowHexSpecifier) != 0) { // We are parsing a hexadecimal number 
                if ((i < 0) || i > Byte.MaxValue) {
                    return false; 
                }
                result = (sbyte)i;
                return true;
            } 

            if (i < MinValue || i > MaxValue) { 
                return false; 
            }
            result = (sbyte) i; 
            return true;
        }

        // 
        // IConvertible implementation
        // 
 
        public TypeCode GetTypeCode() {
            return TypeCode.SByte; 
        }


        ///  
        bool IConvertible.ToBoolean(IFormatProvider provider) {
            return Convert.ToBoolean(m_value); 
        } 

        ///  
        char IConvertible.ToChar(IFormatProvider provider) {
            return Convert.ToChar(m_value);
        }
 
        /// 
        sbyte IConvertible.ToSByte(IFormatProvider provider) { 
            return m_value; 
        }
 
        /// 
        byte IConvertible.ToByte(IFormatProvider provider) {
            return Convert.ToByte(m_value);
        } 

        ///  
        short IConvertible.ToInt16(IFormatProvider provider) { 
            return Convert.ToInt16(m_value);
        } 

        /// 
        ushort IConvertible.ToUInt16(IFormatProvider provider) {
            return Convert.ToUInt16(m_value); 
        }
 
        ///  
        int IConvertible.ToInt32(IFormatProvider provider) {
            return m_value; 
        }

        /// 
        uint IConvertible.ToUInt32(IFormatProvider provider) { 
            return Convert.ToUInt32(m_value);
        } 
 
        /// 
        long IConvertible.ToInt64(IFormatProvider provider) { 
            return Convert.ToInt64(m_value);
        }

        ///  
        ulong IConvertible.ToUInt64(IFormatProvider provider) {
            return Convert.ToUInt64(m_value); 
        } 

        ///  
        float IConvertible.ToSingle(IFormatProvider provider) {
            return Convert.ToSingle(m_value);
        }
 
        /// 
        double IConvertible.ToDouble(IFormatProvider provider) { 
            return Convert.ToDouble(m_value); 
        }
 
        /// 
        Decimal IConvertible.ToDecimal(IFormatProvider provider) {
            return Convert.ToDecimal(m_value);
        } 

        ///  
        DateTime IConvertible.ToDateTime(IFormatProvider provider) { 
            throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "SByte", "DateTime"));
        } 

        /// 
        Object IConvertible.ToType(Type type, IFormatProvider provider) {
            return Convert.DefaultToType((IConvertible)this, type, provider); 
        }
 
///#if GENERICS_WORK 
///        //
///        // IArithmetic implementation 
///        //
///
///        /// 
///        SByte IArithmetic.AbsoluteValue(out bool overflowed) { 
///            overflowed = (m_value == MinValue);  // -m_value overflows
///            return (SByte) (m_value < 0 ? -m_value : m_value); 
///        } 
///
///        ///  
///        SByte IArithmetic.Negate(out bool overflowed) {
///            overflowed = (m_value == MinValue); // Negate(MinValue) overflows
///            return (SByte) (-m_value);
///        } 
///
///        ///  
///        SByte IArithmetic.Sign(out bool overflowed) { 
///            overflowed = false;
///            return (SByte) (m_value >= 0 ? (m_value == 0 ? 0 : 1) : -1); 
///        }
///
///        /// 
///        SByte IArithmetic.Add(SByte addend, out bool overflowed) { 
///            int i = ((int)m_value) + addend;
///            overflowed = (i > MaxValue || i < MinValue); 
///            return (SByte) i; 
///        }
/// 
///        /// 
///        SByte IArithmetic.Subtract(SByte subtrahend, out bool overflowed) {
///            int i = ((int)m_value) - subtrahend;
///            overflowed = (i > MaxValue || i < MinValue); 
///            return (SByte) i;
///        } 
/// 
///        /// 
///        SByte IArithmetic.Multiply(SByte multiplier, out bool overflowed) { 
///            int i = ((int)m_value) * multiplier;
///            overflowed = (i > MaxValue || i < MinValue);
///            return (SByte) i;
///        } 
///
/// 
///        ///  
///        SByte IArithmetic.Divide(SByte divisor, out bool overflowed) {
///            // signed integer division can overflow.  Consider the following 
///            // 8-bit case: -128/-1 = 128.
///            // 128 won't fit into a signed 8-bit integer, instead you will end up
///            // with -128.
///            // 
///            // Because of this corner case, we must check if the numerator
///            // is MinValue and if the denominator is -1. 
/// 
///            overflowed = (divisor == -1 && m_value == MinValue);
///            return (SByte) unchecked(m_value / divisor); 
///        }
///
///        /// 
///        SByte IArithmetic.DivideRemainder(SByte divisor, out SByte remainder, out bool overflowed) { 
///            remainder = (SByte) (m_value % divisor);
///            overflowed = (divisor == -1 && m_value == MinValue); 
///            return (SByte) unchecked(m_value / divisor); 
///        }
/// 
///        /// 
///        SByte IArithmetic.Remainder(SByte divisor, out bool overflowed) {
///            overflowed = false;
///            return (SByte) (m_value % divisor); 
///        }
/// 
///        ///  
///        ArithmeticDescriptor IArithmetic.GetDescriptor() {
///            if (s_descriptor == null) { 
///                s_descriptor = new SByteArithmeticDescriptor( ArithmeticCapabilities.One
///                                                             | ArithmeticCapabilities.Zero
///                                                             | ArithmeticCapabilities.MaxValue
///                                                             | ArithmeticCapabilities.MinValue); 
///            }
///            return s_descriptor; 
///        } 
///
///        private static SByteArithmeticDescriptor s_descriptor; 
///
///        class SByteArithmeticDescriptor : ArithmeticDescriptor {
///            public SByteArithmeticDescriptor(ArithmeticCapabilities capabilities) : base(capabilities) {}
/// 
///            public override SByte One {
///                get { 
///                    return (SByte) 1; 
///                }
///            } 
///
///            public override SByte Zero {
///                get {
///                    return (SByte) 0; 
///                }
///            } 
/// 
///            public override SByte MinValue {
///                get { 
///                    return SByte.MinValue;
///                }
///            }
/// 
///            public override SByte MaxValue {
///                get { 
///                    return SByte.MaxValue; 
///                }
///            } 
///        }
///#endif // #if GENERICS_WORK

    } 
}

// File provided for Reference Use Only by Microsoft Corporation (c) 2007.
// ==++== 
//
//   Copyright (c) Microsoft Corporation.  All rights reserved.
//
// ==--== 
/*============================================================
** 
** Class:  SByte 
**
** 
** Purpose:
**
**
===========================================================*/ 
namespace System {
    using System.Globalization; 
    using System; 
///#if GENERICS_WORK
///    using System.Numerics; 
///#endif
    using System.Runtime.InteropServices;
    using System.Diagnostics.Contracts;
 
    // A place holder class for signed bytes.
[Serializable] 
[CLSCompliant(false), System.Runtime.InteropServices.StructLayout(LayoutKind.Sequential)] 
[System.Runtime.InteropServices.ComVisible(true)]
#if GENERICS_WORK 
    public struct SByte : IComparable, IFormattable, IConvertible
    , IComparable, IEquatable
/// , IArithmetic
#if false // ugly hack to fix syntax for TrimSrc parser, which ignores #if directives 
    {
    } 
#endif 
#else
    public struct SByte : IComparable, IFormattable, IConvertible 
#endif
    {
        private sbyte m_value;
 
        // The maximum value that a Byte may represent: 127.
        public const sbyte MaxValue = (sbyte)0x7F; 
 
        // The minimum value that a Byte may represent: -128.
        public const sbyte MinValue = unchecked((sbyte)0x80); 


        // Compares this object to another object, returning an integer that
        // indicates the relationship. 
        // Returns a value less than zero if this  object
        // null is considered to be less than any instance. 
        // If object is not of type SByte, this method throws an ArgumentException. 
        //
        public int CompareTo(Object obj) { 
            if (obj == null) {
                return 1;
            }
            if (!(obj is SByte)) { 
                throw new ArgumentException (Environment.GetResourceString("Arg_MustBeSByte"));
            } 
            return m_value - ((SByte)obj).m_value; 
        }
 
        public int CompareTo(SByte value) {
            return m_value - value;
        }
 
        // Determines whether two Byte objects are equal.
        public override bool Equals(Object obj) { 
            if (!(obj is SByte)) { 
                return false;
            } 
            return m_value == ((SByte)obj).m_value;
        }

        public bool Equals(SByte obj) 
        {
            return m_value == obj; 
        } 

        // Gets a hash code for this instance. 
        public override int GetHashCode() {
            return ((int)m_value ^ (int)m_value << 8);
        }
 

        // Provides a string representation of a byte. 
        [System.Security.SecuritySafeCritical]  // auto-generated 
        public override String ToString() {
            Contract.Ensures(Contract.Result() != null); 
            return Number.FormatInt32(m_value, null, NumberFormatInfo.CurrentInfo);
        }

        [System.Security.SecuritySafeCritical]  // auto-generated 
        public String ToString(IFormatProvider provider) {
            Contract.Ensures(Contract.Result() != null); 
            return Number.FormatInt32(m_value, null, NumberFormatInfo.GetInstance(provider)); 
        }
 
        public String ToString(String format) {
            Contract.Ensures(Contract.Result() != null);
            return ToString(format, NumberFormatInfo.CurrentInfo);
        } 

        public String ToString(String format, IFormatProvider provider) { 
            Contract.Ensures(Contract.Result() != null); 
            return ToString(format, NumberFormatInfo.GetInstance(provider));
        } 

        [System.Security.SecuritySafeCritical]  // auto-generated
        private String ToString(String format, NumberFormatInfo info) {
            Contract.Ensures(Contract.Result() != null); 

            if (m_value<0 && format!=null && format.Length>0 && (format[0]=='X' || format[0]=='x')) { 
                uint temp = (uint)(m_value & 0x000000FF); 
                return Number.FormatUInt32(temp, format, info);
            } 
            return Number.FormatInt32(m_value, format, info);
        }

        [CLSCompliant(false)] 
        public static sbyte Parse(String s) {
            return Parse(s, NumberStyles.Integer, NumberFormatInfo.CurrentInfo); 
        } 

        [CLSCompliant(false)] 
        public static sbyte Parse(String s, NumberStyles style) {
            NumberFormatInfo.ValidateParseStyleInteger(style);
            return Parse(s, style, NumberFormatInfo.CurrentInfo);
        } 

        [CLSCompliant(false)] 
        public static sbyte Parse(String s, IFormatProvider provider) { 
            return Parse(s, NumberStyles.Integer, NumberFormatInfo.GetInstance(provider));
        } 

        // Parses a signed byte from a String in the given style.  If
        // a NumberFormatInfo isn't specified, the current culture's
        // NumberFormatInfo is assumed. 
        //
        [CLSCompliant(false)] 
        public static sbyte Parse(String s, NumberStyles style, IFormatProvider provider) { 
            NumberFormatInfo.ValidateParseStyleInteger(style);
            return Parse(s, style, NumberFormatInfo.GetInstance(provider)); 
        }

        private static sbyte Parse(String s, NumberStyles style, NumberFormatInfo info) {
 
            int i = 0;
            try { 
                i = Number.ParseInt32(s, style, info); 
            }
            catch(OverflowException e) { 
                throw new OverflowException(Environment.GetResourceString("Overflow_SByte"), e);
            }

            if ((style & NumberStyles.AllowHexSpecifier) != 0) { // We are parsing a hexadecimal number 
                if ((i < 0) || i > Byte.MaxValue) {
                    throw new OverflowException(Environment.GetResourceString("Overflow_SByte")); 
                } 
                return (sbyte)i;
            } 

            if (i < MinValue || i > MaxValue) throw new OverflowException(Environment.GetResourceString("Overflow_SByte"));
            return (sbyte)i;
        } 

        [CLSCompliant(false)] 
        public static bool TryParse(String s, out SByte result) { 
            return TryParse(s, NumberStyles.Integer, NumberFormatInfo.CurrentInfo, out result);
        } 

        [CLSCompliant(false)]
        public static bool TryParse(String s, NumberStyles style, IFormatProvider provider, out SByte result) {
            NumberFormatInfo.ValidateParseStyleInteger(style); 
            return TryParse(s, style, NumberFormatInfo.GetInstance(provider), out result);
        } 
 
        private static bool TryParse(String s, NumberStyles style, NumberFormatInfo info, out SByte result) {
 
            result = 0;
            int i;
            if (!Number.TryParseInt32(s, style, info, out i)) {
                return false; 
            }
 
            if ((style & NumberStyles.AllowHexSpecifier) != 0) { // We are parsing a hexadecimal number 
                if ((i < 0) || i > Byte.MaxValue) {
                    return false; 
                }
                result = (sbyte)i;
                return true;
            } 

            if (i < MinValue || i > MaxValue) { 
                return false; 
            }
            result = (sbyte) i; 
            return true;
        }

        // 
        // IConvertible implementation
        // 
 
        public TypeCode GetTypeCode() {
            return TypeCode.SByte; 
        }


        ///  
        bool IConvertible.ToBoolean(IFormatProvider provider) {
            return Convert.ToBoolean(m_value); 
        } 

        ///  
        char IConvertible.ToChar(IFormatProvider provider) {
            return Convert.ToChar(m_value);
        }
 
        /// 
        sbyte IConvertible.ToSByte(IFormatProvider provider) { 
            return m_value; 
        }
 
        /// 
        byte IConvertible.ToByte(IFormatProvider provider) {
            return Convert.ToByte(m_value);
        } 

        ///  
        short IConvertible.ToInt16(IFormatProvider provider) { 
            return Convert.ToInt16(m_value);
        } 

        /// 
        ushort IConvertible.ToUInt16(IFormatProvider provider) {
            return Convert.ToUInt16(m_value); 
        }
 
        ///  
        int IConvertible.ToInt32(IFormatProvider provider) {
            return m_value; 
        }

        /// 
        uint IConvertible.ToUInt32(IFormatProvider provider) { 
            return Convert.ToUInt32(m_value);
        } 
 
        /// 
        long IConvertible.ToInt64(IFormatProvider provider) { 
            return Convert.ToInt64(m_value);
        }

        ///  
        ulong IConvertible.ToUInt64(IFormatProvider provider) {
            return Convert.ToUInt64(m_value); 
        } 

        ///  
        float IConvertible.ToSingle(IFormatProvider provider) {
            return Convert.ToSingle(m_value);
        }
 
        /// 
        double IConvertible.ToDouble(IFormatProvider provider) { 
            return Convert.ToDouble(m_value); 
        }
 
        /// 
        Decimal IConvertible.ToDecimal(IFormatProvider provider) {
            return Convert.ToDecimal(m_value);
        } 

        ///  
        DateTime IConvertible.ToDateTime(IFormatProvider provider) { 
            throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "SByte", "DateTime"));
        } 

        /// 
        Object IConvertible.ToType(Type type, IFormatProvider provider) {
            return Convert.DefaultToType((IConvertible)this, type, provider); 
        }
 
///#if GENERICS_WORK 
///        //
///        // IArithmetic implementation 
///        //
///
///        /// 
///        SByte IArithmetic.AbsoluteValue(out bool overflowed) { 
///            overflowed = (m_value == MinValue);  // -m_value overflows
///            return (SByte) (m_value < 0 ? -m_value : m_value); 
///        } 
///
///        ///  
///        SByte IArithmetic.Negate(out bool overflowed) {
///            overflowed = (m_value == MinValue); // Negate(MinValue) overflows
///            return (SByte) (-m_value);
///        } 
///
///        ///  
///        SByte IArithmetic.Sign(out bool overflowed) { 
///            overflowed = false;
///            return (SByte) (m_value >= 0 ? (m_value == 0 ? 0 : 1) : -1); 
///        }
///
///        /// 
///        SByte IArithmetic.Add(SByte addend, out bool overflowed) { 
///            int i = ((int)m_value) + addend;
///            overflowed = (i > MaxValue || i < MinValue); 
///            return (SByte) i; 
///        }
/// 
///        /// 
///        SByte IArithmetic.Subtract(SByte subtrahend, out bool overflowed) {
///            int i = ((int)m_value) - subtrahend;
///            overflowed = (i > MaxValue || i < MinValue); 
///            return (SByte) i;
///        } 
/// 
///        /// 
///        SByte IArithmetic.Multiply(SByte multiplier, out bool overflowed) { 
///            int i = ((int)m_value) * multiplier;
///            overflowed = (i > MaxValue || i < MinValue);
///            return (SByte) i;
///        } 
///
/// 
///        ///  
///        SByte IArithmetic.Divide(SByte divisor, out bool overflowed) {
///            // signed integer division can overflow.  Consider the following 
///            // 8-bit case: -128/-1 = 128.
///            // 128 won't fit into a signed 8-bit integer, instead you will end up
///            // with -128.
///            // 
///            // Because of this corner case, we must check if the numerator
///            // is MinValue and if the denominator is -1. 
/// 
///            overflowed = (divisor == -1 && m_value == MinValue);
///            return (SByte) unchecked(m_value / divisor); 
///        }
///
///        /// 
///        SByte IArithmetic.DivideRemainder(SByte divisor, out SByte remainder, out bool overflowed) { 
///            remainder = (SByte) (m_value % divisor);
///            overflowed = (divisor == -1 && m_value == MinValue); 
///            return (SByte) unchecked(m_value / divisor); 
///        }
/// 
///        /// 
///        SByte IArithmetic.Remainder(SByte divisor, out bool overflowed) {
///            overflowed = false;
///            return (SByte) (m_value % divisor); 
///        }
/// 
///        ///  
///        ArithmeticDescriptor IArithmetic.GetDescriptor() {
///            if (s_descriptor == null) { 
///                s_descriptor = new SByteArithmeticDescriptor( ArithmeticCapabilities.One
///                                                             | ArithmeticCapabilities.Zero
///                                                             | ArithmeticCapabilities.MaxValue
///                                                             | ArithmeticCapabilities.MinValue); 
///            }
///            return s_descriptor; 
///        } 
///
///        private static SByteArithmeticDescriptor s_descriptor; 
///
///        class SByteArithmeticDescriptor : ArithmeticDescriptor {
///            public SByteArithmeticDescriptor(ArithmeticCapabilities capabilities) : base(capabilities) {}
/// 
///            public override SByte One {
///                get { 
///                    return (SByte) 1; 
///                }
///            } 
///
///            public override SByte Zero {
///                get {
///                    return (SByte) 0; 
///                }
///            } 
/// 
///            public override SByte MinValue {
///                get { 
///                    return SByte.MinValue;
///                }
///            }
/// 
///            public override SByte MaxValue {
///                get { 
///                    return SByte.MaxValue; 
///                }
///            } 
///        }
///#endif // #if GENERICS_WORK

    } 
}

// File provided for Reference Use Only by Microsoft Corporation (c) 2007.
                        

Link Menu

Network programming in C#, Network Programming in VB.NET, Network Programming in .NET
This book is available now!
Buy at Amazon US or
Buy at Amazon UK