Code:
/ 4.0 / 4.0 / DEVDIV_TFS / Dev10 / Releases / RTMRel / wpf / src / Core / CSharp / System / Windows / Media / Animation / Subtree.cs / 1305600 / Subtree.cs
//------------------------------------------------------------------------------ // Microsoft Windows Client Platform // Copyright (c) Microsoft Corporation, 2003 // // File: Subtree.cs //----------------------------------------------------------------------------- using System; using System.Diagnostics; using System.Collections; using System.Collections.Generic; using MS.Internal.PresentationCore; namespace System.Windows.Media.Animation { [FriendAccessAllowed] // Built into Core, also used by Framework. [System.Flags] internal enum SubtreeFlag { Reset = 1, ProcessRoot = 2, SkipSubtree = 4, } ////// An object that enumerates the clocks of a subtree of Clock /// objects. /// internal struct PrefixSubtreeEnumerator { #region Constructor ////// Creates an enumerator that iterates over a subtree of clocks /// in prefix order. /// /// /// The clock that is the root of the subtree to enumerate. /// /// /// True to include the root in the enumeration, false otherwise. /// internal PrefixSubtreeEnumerator(Clock root, bool processRoot) { _rootClock = root; _currentClock = null; _flags = processRoot ? (SubtreeFlag.Reset | SubtreeFlag.ProcessRoot) : SubtreeFlag.Reset; } #endregion // Constructor #region Methods ////// Causes the enumerator to not enumerate the clocks in the subtree rooted /// at the current clock. /// internal void SkipSubtree() { _flags |= SubtreeFlag.SkipSubtree; } ////// Advances the enumerator to the next element of the collection. /// ////// true if the enumerator was successfully advanced to the next element, /// false if the enumerator has passed the end of the collection. /// public bool MoveNext() { // Get the iteration started in the right place, if we are just starting if ((_flags & SubtreeFlag.Reset) != 0) { // We are just getting started. The first clock is either the root // or its first child if ((_flags & SubtreeFlag.ProcessRoot) != 0) { // Start with the root _currentClock = _rootClock; } else { // Start with the root's first child if (_rootClock != null) { ClockGroup rootClockGroup = _rootClock as ClockGroup; if (rootClockGroup != null) { _currentClock = rootClockGroup.FirstChild; } else { _currentClock = null; } } } // Next time we won't be getting started anymore _flags &= ~SubtreeFlag.Reset; } else if (_currentClock != null) { // The next clock is possibly the first child of the current clock ClockGroup currentClockGroup = _currentClock as ClockGroup; Clock nextClock = (currentClockGroup == null) ? null : currentClockGroup.FirstChild; // Skip the children if explicitly asked to do so, or if there aren't any if (((_flags & SubtreeFlag.SkipSubtree) != 0) || (nextClock == null)) { // Pop back to the first ancestor that has siblings (current clock included). Don't // go back further than the root of the subtree. At the end of this loop, nextClock // will point to the proper next clock. while ((_currentClock != _rootClock) && ((nextClock = _currentClock.NextSibling) == null)) { _currentClock = _currentClock.InternalParent; } // Don't process siblings of the root if (_currentClock == _rootClock) { nextClock = null; } _flags &= ~SubtreeFlag.SkipSubtree; } _currentClock = nextClock; } return _currentClock != null; } ////// Sets the enumerator to its initial position, which is before the /// first element in the collection. /// public void Reset() { _currentClock = null; _flags = (_flags & SubtreeFlag.ProcessRoot) | SubtreeFlag.Reset; } #endregion // Methods #region Properties ////// Gets the current element in the collection. /// internal Clock Current { get { return _currentClock; } } #endregion // Properties #region Data private Clock _rootClock; private Clock _currentClock; private SubtreeFlag _flags; #endregion // Data } ////// An object that enumerates the clocks of a subtree of Clock /// objects. /// internal struct PostfixSubtreeEnumerator { #region Constructor internal PostfixSubtreeEnumerator(Clock root, bool processRoot) { _rootClock = root; _currentClock = null; _flags = processRoot ? (SubtreeFlag.Reset | SubtreeFlag.ProcessRoot) : SubtreeFlag.Reset; } #endregion // Constructor #region Methods ////// Advances the enumerator to the next element of the collection. /// ////// true if the enumerator was successfully advanced to the next element, /// false if the enumerator has passed the end of the collection. /// public bool MoveNext() { // Get started in the right place if ((_flags & SubtreeFlag.Reset) != 0) { _currentClock = _rootClock; _flags &= ~SubtreeFlag.Reset; } else if (_currentClock == _rootClock) { // We last saw the root clock, so we are done _currentClock = null; } // Skip trying to iterate if we are already past the end if (_currentClock != null) { Clock nextClock = _currentClock; // The next clock is either our next sibling's first leaf // or, if we don't have a sibling, our parent. If the current // clock is null, however, we are just starting, so skip this // move and go straight to the descent part if ((_currentClock != _rootClock) && (nextClock = _currentClock.NextSibling) == null) { // We have no siblings, so the next clock is our parent _currentClock = _currentClock.InternalParent; } else { // We have a next sibling or we are the root. In either case, find the // first leaf clock under this subtree ClockGroup currentClockGroup; do { _currentClock = nextClock; currentClockGroup = _currentClock as ClockGroup; } while ((nextClock = _currentClock.FirstChild) != null); } // Don't process the root, unless specifically requested if ((_currentClock == _rootClock) && ((_flags & SubtreeFlag.ProcessRoot) == 0)) { _currentClock = null; } } return _currentClock != null; } #endregion // Methods #region Properties ////// Gets the current element in the collection. /// internal Clock Current { get { return _currentClock; } } #endregion // Properties #region Data private Clock _rootClock; private Clock _currentClock; private SubtreeFlag _flags; #endregion // Data } ////// An object that enumerates the timelines of a tree of Timeline /// objects. /// [FriendAccessAllowed] // Built into Core, also used by Framework. internal struct TimelineTreeEnumerator { #region Constructor ////// Creates an enumerator that iterates over a subtree of timelines /// in prefix order. /// /// /// The timeline that is the root of the subtree to enumerate. /// /// /// True to include the root in the enumeration, false otherwise. /// internal TimelineTreeEnumerator(Timeline root, bool processRoot) { _rootTimeline = root; _flags = processRoot ? (SubtreeFlag.Reset | SubtreeFlag.ProcessRoot) : SubtreeFlag.Reset; // Start with stacks of capacity 10. That's relatively small, yet // it covers very large trees without reallocation of stack data. // Note that given the way we use the stacks we need one less entry // for indices than for timelines, as we don't care what the index // of the root timeline is. _indexStack = new Stack(9); _timelineStack = new Stack(10); } #endregion // Constructor #region Methods /// /// Causes the enumerator to not enumerate the timelines in the subtree rooted /// at the current timeline. /// internal void SkipSubtree() { _flags |= SubtreeFlag.SkipSubtree; } ////// Advances the enumerator to the next element of the collection. /// ////// true if the enumerator was successfully advanced to the next element, /// false if the enumerator has passed the end of the collection. /// public bool MoveNext() { TimelineCollection children; // Get the iteration started in the right place, if we are just starting if ((_flags & SubtreeFlag.Reset) != 0) { // The reset flag takes effect only once _flags &= ~SubtreeFlag.Reset; // We are just getting started. The first timeline is the root _timelineStack.Push(_rootTimeline); // If we are not supposed to return the root, simply skip it if ((_flags & SubtreeFlag.ProcessRoot) == 0) { MoveNext(); } } else if (_timelineStack.Count > 0) { // Only TimelineGroup can have children TimelineGroup timelineGroup = _timelineStack.Peek() as TimelineGroup; // The next timeline is possibly the first child of the current timeline // If we have children move to the first one, unless we were // asked to skip the subtree if ( ((_flags & SubtreeFlag.SkipSubtree) == 0) && timelineGroup != null && (children = timelineGroup.Children) != null && children.Count > 0 ) { _timelineStack.Push(children[0]); _indexStack.Push((int)0); } else { // The skip subtree flag takes effect only once _flags &= ~SubtreeFlag.SkipSubtree; // Move to the first ancestor that has unvisited children, // then move to the first unvisited child. If we get to // the root it means we are done. _timelineStack.Pop(); while (_timelineStack.Count > 0) { timelineGroup = _timelineStack.Peek() as TimelineGroup; // This has to be non-null since we already went down the tree children = timelineGroup.Children; int index = (int)_indexStack.Pop() + 1; if (index < children.Count) { // Move to the next child, and we are done _timelineStack.Push(children[index]); _indexStack.Push(index); break; } _timelineStack.Pop(); } } } return _timelineStack.Count > 0; } #endregion // Methods #region Properties ////// Gets the current element in the collection. /// internal Timeline Current { get { return _timelineStack.Peek(); } } #endregion // Properties #region Data private Timeline _rootTimeline; private SubtreeFlag _flags; private Stack _indexStack; private Stack_timelineStack; #endregion // Data } } // File provided for Reference Use Only by Microsoft Corporation (c) 2007. // Copyright (c) Microsoft Corporation. All rights reserved. //------------------------------------------------------------------------------ // Microsoft Windows Client Platform // Copyright (c) Microsoft Corporation, 2003 // // File: Subtree.cs //----------------------------------------------------------------------------- using System; using System.Diagnostics; using System.Collections; using System.Collections.Generic; using MS.Internal.PresentationCore; namespace System.Windows.Media.Animation { [FriendAccessAllowed] // Built into Core, also used by Framework. [System.Flags] internal enum SubtreeFlag { Reset = 1, ProcessRoot = 2, SkipSubtree = 4, } /// /// An object that enumerates the clocks of a subtree of Clock /// objects. /// internal struct PrefixSubtreeEnumerator { #region Constructor ////// Creates an enumerator that iterates over a subtree of clocks /// in prefix order. /// /// /// The clock that is the root of the subtree to enumerate. /// /// /// True to include the root in the enumeration, false otherwise. /// internal PrefixSubtreeEnumerator(Clock root, bool processRoot) { _rootClock = root; _currentClock = null; _flags = processRoot ? (SubtreeFlag.Reset | SubtreeFlag.ProcessRoot) : SubtreeFlag.Reset; } #endregion // Constructor #region Methods ////// Causes the enumerator to not enumerate the clocks in the subtree rooted /// at the current clock. /// internal void SkipSubtree() { _flags |= SubtreeFlag.SkipSubtree; } ////// Advances the enumerator to the next element of the collection. /// ////// true if the enumerator was successfully advanced to the next element, /// false if the enumerator has passed the end of the collection. /// public bool MoveNext() { // Get the iteration started in the right place, if we are just starting if ((_flags & SubtreeFlag.Reset) != 0) { // We are just getting started. The first clock is either the root // or its first child if ((_flags & SubtreeFlag.ProcessRoot) != 0) { // Start with the root _currentClock = _rootClock; } else { // Start with the root's first child if (_rootClock != null) { ClockGroup rootClockGroup = _rootClock as ClockGroup; if (rootClockGroup != null) { _currentClock = rootClockGroup.FirstChild; } else { _currentClock = null; } } } // Next time we won't be getting started anymore _flags &= ~SubtreeFlag.Reset; } else if (_currentClock != null) { // The next clock is possibly the first child of the current clock ClockGroup currentClockGroup = _currentClock as ClockGroup; Clock nextClock = (currentClockGroup == null) ? null : currentClockGroup.FirstChild; // Skip the children if explicitly asked to do so, or if there aren't any if (((_flags & SubtreeFlag.SkipSubtree) != 0) || (nextClock == null)) { // Pop back to the first ancestor that has siblings (current clock included). Don't // go back further than the root of the subtree. At the end of this loop, nextClock // will point to the proper next clock. while ((_currentClock != _rootClock) && ((nextClock = _currentClock.NextSibling) == null)) { _currentClock = _currentClock.InternalParent; } // Don't process siblings of the root if (_currentClock == _rootClock) { nextClock = null; } _flags &= ~SubtreeFlag.SkipSubtree; } _currentClock = nextClock; } return _currentClock != null; } ////// Sets the enumerator to its initial position, which is before the /// first element in the collection. /// public void Reset() { _currentClock = null; _flags = (_flags & SubtreeFlag.ProcessRoot) | SubtreeFlag.Reset; } #endregion // Methods #region Properties ////// Gets the current element in the collection. /// internal Clock Current { get { return _currentClock; } } #endregion // Properties #region Data private Clock _rootClock; private Clock _currentClock; private SubtreeFlag _flags; #endregion // Data } ////// An object that enumerates the clocks of a subtree of Clock /// objects. /// internal struct PostfixSubtreeEnumerator { #region Constructor internal PostfixSubtreeEnumerator(Clock root, bool processRoot) { _rootClock = root; _currentClock = null; _flags = processRoot ? (SubtreeFlag.Reset | SubtreeFlag.ProcessRoot) : SubtreeFlag.Reset; } #endregion // Constructor #region Methods ////// Advances the enumerator to the next element of the collection. /// ////// true if the enumerator was successfully advanced to the next element, /// false if the enumerator has passed the end of the collection. /// public bool MoveNext() { // Get started in the right place if ((_flags & SubtreeFlag.Reset) != 0) { _currentClock = _rootClock; _flags &= ~SubtreeFlag.Reset; } else if (_currentClock == _rootClock) { // We last saw the root clock, so we are done _currentClock = null; } // Skip trying to iterate if we are already past the end if (_currentClock != null) { Clock nextClock = _currentClock; // The next clock is either our next sibling's first leaf // or, if we don't have a sibling, our parent. If the current // clock is null, however, we are just starting, so skip this // move and go straight to the descent part if ((_currentClock != _rootClock) && (nextClock = _currentClock.NextSibling) == null) { // We have no siblings, so the next clock is our parent _currentClock = _currentClock.InternalParent; } else { // We have a next sibling or we are the root. In either case, find the // first leaf clock under this subtree ClockGroup currentClockGroup; do { _currentClock = nextClock; currentClockGroup = _currentClock as ClockGroup; } while ((nextClock = _currentClock.FirstChild) != null); } // Don't process the root, unless specifically requested if ((_currentClock == _rootClock) && ((_flags & SubtreeFlag.ProcessRoot) == 0)) { _currentClock = null; } } return _currentClock != null; } #endregion // Methods #region Properties ////// Gets the current element in the collection. /// internal Clock Current { get { return _currentClock; } } #endregion // Properties #region Data private Clock _rootClock; private Clock _currentClock; private SubtreeFlag _flags; #endregion // Data } ////// An object that enumerates the timelines of a tree of Timeline /// objects. /// [FriendAccessAllowed] // Built into Core, also used by Framework. internal struct TimelineTreeEnumerator { #region Constructor ////// Creates an enumerator that iterates over a subtree of timelines /// in prefix order. /// /// /// The timeline that is the root of the subtree to enumerate. /// /// /// True to include the root in the enumeration, false otherwise. /// internal TimelineTreeEnumerator(Timeline root, bool processRoot) { _rootTimeline = root; _flags = processRoot ? (SubtreeFlag.Reset | SubtreeFlag.ProcessRoot) : SubtreeFlag.Reset; // Start with stacks of capacity 10. That's relatively small, yet // it covers very large trees without reallocation of stack data. // Note that given the way we use the stacks we need one less entry // for indices than for timelines, as we don't care what the index // of the root timeline is. _indexStack = new Stack(9); _timelineStack = new Stack(10); } #endregion // Constructor #region Methods /// /// Causes the enumerator to not enumerate the timelines in the subtree rooted /// at the current timeline. /// internal void SkipSubtree() { _flags |= SubtreeFlag.SkipSubtree; } ////// Advances the enumerator to the next element of the collection. /// ////// true if the enumerator was successfully advanced to the next element, /// false if the enumerator has passed the end of the collection. /// public bool MoveNext() { TimelineCollection children; // Get the iteration started in the right place, if we are just starting if ((_flags & SubtreeFlag.Reset) != 0) { // The reset flag takes effect only once _flags &= ~SubtreeFlag.Reset; // We are just getting started. The first timeline is the root _timelineStack.Push(_rootTimeline); // If we are not supposed to return the root, simply skip it if ((_flags & SubtreeFlag.ProcessRoot) == 0) { MoveNext(); } } else if (_timelineStack.Count > 0) { // Only TimelineGroup can have children TimelineGroup timelineGroup = _timelineStack.Peek() as TimelineGroup; // The next timeline is possibly the first child of the current timeline // If we have children move to the first one, unless we were // asked to skip the subtree if ( ((_flags & SubtreeFlag.SkipSubtree) == 0) && timelineGroup != null && (children = timelineGroup.Children) != null && children.Count > 0 ) { _timelineStack.Push(children[0]); _indexStack.Push((int)0); } else { // The skip subtree flag takes effect only once _flags &= ~SubtreeFlag.SkipSubtree; // Move to the first ancestor that has unvisited children, // then move to the first unvisited child. If we get to // the root it means we are done. _timelineStack.Pop(); while (_timelineStack.Count > 0) { timelineGroup = _timelineStack.Peek() as TimelineGroup; // This has to be non-null since we already went down the tree children = timelineGroup.Children; int index = (int)_indexStack.Pop() + 1; if (index < children.Count) { // Move to the next child, and we are done _timelineStack.Push(children[index]); _indexStack.Push(index); break; } _timelineStack.Pop(); } } } return _timelineStack.Count > 0; } #endregion // Methods #region Properties ////// Gets the current element in the collection. /// internal Timeline Current { get { return _timelineStack.Peek(); } } #endregion // Properties #region Data private Timeline _rootTimeline; private SubtreeFlag _flags; private Stack _indexStack; private Stack_timelineStack; #endregion // Data } } // File provided for Reference Use Only by Microsoft Corporation (c) 2007. // Copyright (c) Microsoft Corporation. All rights reserved.
Link Menu

This book is available now!
Buy at Amazon US or
Buy at Amazon UK
- _NetRes.cs
- Misc.cs
- HandleRef.cs
- TextCompositionEventArgs.cs
- IPCCacheManager.cs
- DataRelationPropertyDescriptor.cs
- ImageCreator.cs
- Invariant.cs
- XmlImplementation.cs
- FormsAuthenticationEventArgs.cs
- SHA512.cs
- ItemsPresenter.cs
- FaultException.cs
- PermissionSetEnumerator.cs
- TTSEvent.cs
- MemoryFailPoint.cs
- SqlParameterizer.cs
- TextModifier.cs
- Vector3D.cs
- EditorPart.cs
- SortDescriptionCollection.cs
- SerializeAbsoluteContext.cs
- StylusEventArgs.cs
- SafeLibraryHandle.cs
- DisposableCollectionWrapper.cs
- WpfPayload.cs
- ToolStripArrowRenderEventArgs.cs
- TypeDelegator.cs
- AutoGeneratedField.cs
- IRCollection.cs
- DelegatingTypeDescriptionProvider.cs
- MatrixAnimationBase.cs
- DataAdapter.cs
- KeyValueSerializer.cs
- XmlSubtreeReader.cs
- LayoutDump.cs
- SqlTypeSystemProvider.cs
- PathParser.cs
- PersistChildrenAttribute.cs
- RegexReplacement.cs
- EntityTemplateFactory.cs
- SequenceRange.cs
- EmptyStringExpandableObjectConverter.cs
- DataServiceResponse.cs
- SpecialNameAttribute.cs
- AxisAngleRotation3D.cs
- QueryGenerator.cs
- SubMenuStyle.cs
- Int64Storage.cs
- InstanceHandle.cs
- ContentOperations.cs
- ExpressionConverter.cs
- DBCommandBuilder.cs
- SimpleWebHandlerParser.cs
- XmlDesignerDataSourceView.cs
- OrCondition.cs
- WarningException.cs
- Vector3DAnimationUsingKeyFrames.cs
- CanExecuteRoutedEventArgs.cs
- TraceListeners.cs
- BitmapPalette.cs
- SequentialActivityDesigner.cs
- MailMessageEventArgs.cs
- NativeMethods.cs
- TypeConverterAttribute.cs
- bidPrivateBase.cs
- DiagnosticsConfiguration.cs
- SymDocumentType.cs
- WebExceptionStatus.cs
- SQLMembershipProvider.cs
- TextPointerBase.cs
- EntityDataSourceConfigureObjectContextPanel.cs
- CommandValueSerializer.cs
- ComboBoxRenderer.cs
- DbCommandDefinition.cs
- ProfileModule.cs
- HttpWebRequest.cs
- KeySpline.cs
- WebInvokeAttribute.cs
- SqlColumnizer.cs
- SqlClientFactory.cs
- EntityCommandExecutionException.cs
- TimeIntervalCollection.cs
- SequentialActivityDesigner.cs
- TypeGenericEnumerableViewSchema.cs
- DataBoundControlAdapter.cs
- ADMembershipProvider.cs
- DataRecordInternal.cs
- CompensatableSequenceActivity.cs
- SqlDataSourceView.cs
- _UncName.cs
- DetailsViewActionList.cs
- MouseButtonEventArgs.cs
- ClientSession.cs
- DateTimeFormat.cs
- DbCommandTree.cs
- OdbcUtils.cs
- DateTimePicker.cs
- BinaryObjectReader.cs
- EncodingNLS.cs