Vector.cs source code in C# .NET

Source code for the .NET framework in C#

                        

Code:

/ Net / Net / 3.5.50727.3053 / DEVDIV / depot / DevDiv / releases / Orcas / SP / wpf / src / Base / System / Windows / Vector.cs / 1 / Vector.cs

                            //------------------------------------------------------------------------------ 
//  Microsoft Avalon
//  Copyright (c) Microsoft Corporation, 2001, 2002
//
//  File: Vector.cs 
//-----------------------------------------------------------------------------
using System; 
using System.ComponentModel; 
using System.ComponentModel.Design.Serialization;
using System.Reflection; 
using MS.Internal;
using System.Text;
using System.Collections;
using System.Globalization; 
using System.Windows;
using System.Windows.Media; 
using System.Runtime.InteropServices; 

namespace System.Windows 
{
    /// 
    /// Vector - A value type which defined a vector in terms of X and Y
    ///  
    public partial struct Vector
    { 
        #region Constructors 

        ///  
        /// Constructor which sets the vector's initial values
        /// 
        ///  double - The initial X 
        ///  double - THe initial Y  
        public Vector(double x, double y)
        { 
            _x = x; 
            _y = y;
        } 

        #endregion Constructors

        #region Public Methods 

        ///  
        /// Length Property - the length of this Vector 
        /// 
        public double Length 
        {
            get
            {
                return Math.Sqrt(_x*_x + _y*_y); 
            }
        } 
 
        /// 
        /// LengthSquared Property - the squared length of this Vector 
        /// 
        public double LengthSquared
        {
            get 
            {
                return _x*_x + _y*_y; 
            } 
        }
 
        /// 
        /// Normalize - Updates this Vector to maintain its direction, but to have a length
        /// of 1.  This is equivalent to dividing this Vector by Length
        ///  
        public void Normalize()
        { 
            // Avoid overflow 
            this /= Math.Max(Math.Abs(_x),Math.Abs(_y));
            this /= Length; 
        }

        /// 
        /// CrossProduct - Returns the cross product: vector1.X*vector2.Y - vector1.Y*vector2.X 
        /// 
        ///  
        /// Returns the cross product: vector1.X*vector2.Y - vector1.Y*vector2.X 
        /// 
        ///  The first Vector  
        ///  The second Vector 
        public static double CrossProduct(Vector vector1, Vector vector2)
        {
            return vector1._x * vector2._y - vector1._y * vector2._x; 
        }
 
        ///  
        /// AngleBetween - the angle between 2 vectors
        ///  
        /// 
        /// Returns the the angle in degrees between vector1 and vector2
        /// 
        ///  The first Vector  
        ///  The second Vector 
        public static double AngleBetween(Vector vector1, Vector vector2) 
        { 
            double sin = vector1._x * vector2._y - vector2._x * vector1._y;
            double cos = vector1._x * vector2._x + vector1._y * vector2._y; 

            return Math.Atan2(sin, cos) * (180 / Math.PI);
        }
 
        #endregion Public Methods
 
        #region Public Operators 
        /// 
        /// Operator -Vector (unary negation) 
        /// 
        public static Vector operator - (Vector vector)
        {
            return new Vector(-vector._x,-vector._y); 
        }
 
        ///  
        /// Negates the values of X and Y on this Vector
        ///  
        public void Negate()
        {
            _x = -_x;
            _y = -_y; 
        }
 
        ///  
        /// Operator Vector + Vector
        ///  
        public static Vector operator + (Vector vector1, Vector vector2)
        {
            return new Vector(vector1._x + vector2._x,
                              vector1._y + vector2._y); 
        }
 
        ///  
        /// Add: Vector + Vector
        ///  
        public static Vector Add(Vector vector1, Vector vector2)
        {
            return new Vector(vector1._x + vector2._x,
                              vector1._y + vector2._y); 
        }
 
        ///  
        /// Operator Vector - Vector
        ///  
        public static Vector operator - (Vector vector1, Vector vector2)
        {
            return new Vector(vector1._x - vector2._x,
                              vector1._y - vector2._y); 
        }
 
        ///  
        /// Subtract: Vector - Vector
        ///  
        public static Vector Subtract(Vector vector1, Vector vector2)
        {
            return new Vector(vector1._x - vector2._x,
                              vector1._y - vector2._y); 
        }
 
        ///  
        /// Operator Vector + Point
        ///  
        public static Point operator + (Vector vector, Point point)
        {
            return new Point(point._x + vector._x, point._y + vector._y);
        } 

        ///  
        /// Add: Vector + Point 
        /// 
        public static Point Add(Vector vector, Point point) 
        {
            return new Point(point._x + vector._x, point._y + vector._y);
        }
 
        /// 
        /// Operator Vector * double 
        ///  
        public static Vector operator * (Vector vector, double scalar)
        { 
            return new Vector(vector._x * scalar,
                              vector._y * scalar);
        }
 
        /// 
        /// Multiply: Vector * double 
        ///  
        public static Vector Multiply(Vector vector, double scalar)
        { 
            return new Vector(vector._x * scalar,
                              vector._y * scalar);
        }
 
        /// 
        /// Operator double * Vector 
        ///  
        public static Vector operator * (double scalar, Vector vector)
        { 
            return new Vector(vector._x * scalar,
                              vector._y * scalar);
        }
 
        /// 
        /// Multiply: double * Vector 
        ///  
        public static Vector Multiply(double scalar, Vector vector)
        { 
            return new Vector(vector._x * scalar,
                              vector._y * scalar);
        }
 
        /// 
        /// Operator Vector / double 
        ///  
        public static Vector operator / (Vector vector, double scalar)
        { 
            return vector * (1.0 / scalar);
        }

        ///  
        /// Multiply: Vector / double
        ///  
        public static Vector Divide(Vector vector, double scalar) 
        {
            return vector * (1.0 / scalar); 
        }

        /// 
        /// Operator Vector * Matrix 
        /// 
        public static Vector operator * (Vector vector, Matrix matrix) 
        { 
            return matrix.Transform(vector);
        } 

        /// 
        /// Multiply: Vector * Matrix
        ///  
        public static Vector Multiply(Vector vector, Matrix matrix)
        { 
            return matrix.Transform(vector); 
        }
 
        /// 
        /// Operator Vector * Vector, interpreted as their dot product
        /// 
        public static double operator * (Vector vector1, Vector vector2) 
        {
            return vector1._x * vector2._x + vector1._y * vector2._y; 
        } 

        ///  
        /// Multiply - Returns the dot product: vector1.X*vector2.X + vector1.Y*vector2.Y
        /// 
        /// 
        /// Returns the dot product: vector1.X*vector2.X + vector1.Y*vector2.Y 
        /// 
        ///  The first Vector  
        ///  The second Vector  
        public static double Multiply(Vector vector1, Vector vector2)
        { 
            return vector1._x * vector2._x + vector1._y * vector2._y;
        }

        ///  
        /// Determinant - Returns the determinant det(vector1, vector2)
        ///  
        ///  
        /// Returns the determinant: vector1.X*vector2.Y - vector1.Y*vector2.X
        ///  
        ///  The first Vector 
        ///  The second Vector 
        public static double Determinant(Vector vector1, Vector vector2)
        { 
            return vector1._x * vector2._y - vector1._y * vector2._x;
        } 
 
        /// 
        /// Explicit conversion to Size.  Note that since Size cannot contain negative values, 
        /// the resulting size will contains the absolute values of X and Y
        /// 
        /// 
        /// Size - A Size equal to this Vector 
        /// 
        ///  Vector - the Vector to convert to a Size  
        public static explicit operator Size(Vector vector) 
        {
            return new Size(Math.Abs(vector._x), Math.Abs(vector._y)); 
        }

        /// 
        /// Explicit conversion to Point 
        /// 
        ///  
        /// Point - A Point equal to this Vector 
        /// 
        ///  Vector - the Vector to convert to a Point  
        public static explicit operator Point(Vector vector)
        {
            return new Point(vector._x, vector._y);
        } 
        #endregion Public Operators
    } 
} 

// File provided for Reference Use Only by Microsoft Corporation (c) 2007.
// Copyright (c) Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------ 
//  Microsoft Avalon
//  Copyright (c) Microsoft Corporation, 2001, 2002
//
//  File: Vector.cs 
//-----------------------------------------------------------------------------
using System; 
using System.ComponentModel; 
using System.ComponentModel.Design.Serialization;
using System.Reflection; 
using MS.Internal;
using System.Text;
using System.Collections;
using System.Globalization; 
using System.Windows;
using System.Windows.Media; 
using System.Runtime.InteropServices; 

namespace System.Windows 
{
    /// 
    /// Vector - A value type which defined a vector in terms of X and Y
    ///  
    public partial struct Vector
    { 
        #region Constructors 

        ///  
        /// Constructor which sets the vector's initial values
        /// 
        ///  double - The initial X 
        ///  double - THe initial Y  
        public Vector(double x, double y)
        { 
            _x = x; 
            _y = y;
        } 

        #endregion Constructors

        #region Public Methods 

        ///  
        /// Length Property - the length of this Vector 
        /// 
        public double Length 
        {
            get
            {
                return Math.Sqrt(_x*_x + _y*_y); 
            }
        } 
 
        /// 
        /// LengthSquared Property - the squared length of this Vector 
        /// 
        public double LengthSquared
        {
            get 
            {
                return _x*_x + _y*_y; 
            } 
        }
 
        /// 
        /// Normalize - Updates this Vector to maintain its direction, but to have a length
        /// of 1.  This is equivalent to dividing this Vector by Length
        ///  
        public void Normalize()
        { 
            // Avoid overflow 
            this /= Math.Max(Math.Abs(_x),Math.Abs(_y));
            this /= Length; 
        }

        /// 
        /// CrossProduct - Returns the cross product: vector1.X*vector2.Y - vector1.Y*vector2.X 
        /// 
        ///  
        /// Returns the cross product: vector1.X*vector2.Y - vector1.Y*vector2.X 
        /// 
        ///  The first Vector  
        ///  The second Vector 
        public static double CrossProduct(Vector vector1, Vector vector2)
        {
            return vector1._x * vector2._y - vector1._y * vector2._x; 
        }
 
        ///  
        /// AngleBetween - the angle between 2 vectors
        ///  
        /// 
        /// Returns the the angle in degrees between vector1 and vector2
        /// 
        ///  The first Vector  
        ///  The second Vector 
        public static double AngleBetween(Vector vector1, Vector vector2) 
        { 
            double sin = vector1._x * vector2._y - vector2._x * vector1._y;
            double cos = vector1._x * vector2._x + vector1._y * vector2._y; 

            return Math.Atan2(sin, cos) * (180 / Math.PI);
        }
 
        #endregion Public Methods
 
        #region Public Operators 
        /// 
        /// Operator -Vector (unary negation) 
        /// 
        public static Vector operator - (Vector vector)
        {
            return new Vector(-vector._x,-vector._y); 
        }
 
        ///  
        /// Negates the values of X and Y on this Vector
        ///  
        public void Negate()
        {
            _x = -_x;
            _y = -_y; 
        }
 
        ///  
        /// Operator Vector + Vector
        ///  
        public static Vector operator + (Vector vector1, Vector vector2)
        {
            return new Vector(vector1._x + vector2._x,
                              vector1._y + vector2._y); 
        }
 
        ///  
        /// Add: Vector + Vector
        ///  
        public static Vector Add(Vector vector1, Vector vector2)
        {
            return new Vector(vector1._x + vector2._x,
                              vector1._y + vector2._y); 
        }
 
        ///  
        /// Operator Vector - Vector
        ///  
        public static Vector operator - (Vector vector1, Vector vector2)
        {
            return new Vector(vector1._x - vector2._x,
                              vector1._y - vector2._y); 
        }
 
        ///  
        /// Subtract: Vector - Vector
        ///  
        public static Vector Subtract(Vector vector1, Vector vector2)
        {
            return new Vector(vector1._x - vector2._x,
                              vector1._y - vector2._y); 
        }
 
        ///  
        /// Operator Vector + Point
        ///  
        public static Point operator + (Vector vector, Point point)
        {
            return new Point(point._x + vector._x, point._y + vector._y);
        } 

        ///  
        /// Add: Vector + Point 
        /// 
        public static Point Add(Vector vector, Point point) 
        {
            return new Point(point._x + vector._x, point._y + vector._y);
        }
 
        /// 
        /// Operator Vector * double 
        ///  
        public static Vector operator * (Vector vector, double scalar)
        { 
            return new Vector(vector._x * scalar,
                              vector._y * scalar);
        }
 
        /// 
        /// Multiply: Vector * double 
        ///  
        public static Vector Multiply(Vector vector, double scalar)
        { 
            return new Vector(vector._x * scalar,
                              vector._y * scalar);
        }
 
        /// 
        /// Operator double * Vector 
        ///  
        public static Vector operator * (double scalar, Vector vector)
        { 
            return new Vector(vector._x * scalar,
                              vector._y * scalar);
        }
 
        /// 
        /// Multiply: double * Vector 
        ///  
        public static Vector Multiply(double scalar, Vector vector)
        { 
            return new Vector(vector._x * scalar,
                              vector._y * scalar);
        }
 
        /// 
        /// Operator Vector / double 
        ///  
        public static Vector operator / (Vector vector, double scalar)
        { 
            return vector * (1.0 / scalar);
        }

        ///  
        /// Multiply: Vector / double
        ///  
        public static Vector Divide(Vector vector, double scalar) 
        {
            return vector * (1.0 / scalar); 
        }

        /// 
        /// Operator Vector * Matrix 
        /// 
        public static Vector operator * (Vector vector, Matrix matrix) 
        { 
            return matrix.Transform(vector);
        } 

        /// 
        /// Multiply: Vector * Matrix
        ///  
        public static Vector Multiply(Vector vector, Matrix matrix)
        { 
            return matrix.Transform(vector); 
        }
 
        /// 
        /// Operator Vector * Vector, interpreted as their dot product
        /// 
        public static double operator * (Vector vector1, Vector vector2) 
        {
            return vector1._x * vector2._x + vector1._y * vector2._y; 
        } 

        ///  
        /// Multiply - Returns the dot product: vector1.X*vector2.X + vector1.Y*vector2.Y
        /// 
        /// 
        /// Returns the dot product: vector1.X*vector2.X + vector1.Y*vector2.Y 
        /// 
        ///  The first Vector  
        ///  The second Vector  
        public static double Multiply(Vector vector1, Vector vector2)
        { 
            return vector1._x * vector2._x + vector1._y * vector2._y;
        }

        ///  
        /// Determinant - Returns the determinant det(vector1, vector2)
        ///  
        ///  
        /// Returns the determinant: vector1.X*vector2.Y - vector1.Y*vector2.X
        ///  
        ///  The first Vector 
        ///  The second Vector 
        public static double Determinant(Vector vector1, Vector vector2)
        { 
            return vector1._x * vector2._y - vector1._y * vector2._x;
        } 
 
        /// 
        /// Explicit conversion to Size.  Note that since Size cannot contain negative values, 
        /// the resulting size will contains the absolute values of X and Y
        /// 
        /// 
        /// Size - A Size equal to this Vector 
        /// 
        ///  Vector - the Vector to convert to a Size  
        public static explicit operator Size(Vector vector) 
        {
            return new Size(Math.Abs(vector._x), Math.Abs(vector._y)); 
        }

        /// 
        /// Explicit conversion to Point 
        /// 
        ///  
        /// Point - A Point equal to this Vector 
        /// 
        ///  Vector - the Vector to convert to a Point  
        public static explicit operator Point(Vector vector)
        {
            return new Point(vector._x, vector._y);
        } 
        #endregion Public Operators
    } 
} 

// File provided for Reference Use Only by Microsoft Corporation (c) 2007.
// Copyright (c) Microsoft Corporation. All rights reserved.
                        

Link Menu

Network programming in C#, Network Programming in VB.NET, Network Programming in .NET
This book is available now!
Buy at Amazon US or
Buy at Amazon UK